Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 171982, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575013

RESUMO

In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.


Assuntos
Carvão Vegetal , Fertilizantes , Fertilizantes/análise , Carvão Vegetal/química , Anaerobiose , Agricultura/métodos , Nitrogênio/análise , Potássio/análise , Fósforo/análise , Biocombustíveis
2.
Sci Adv ; 7(15)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33837078

RESUMO

The mechanical properties of metallic alloys are controlled through the design of their polycrystalline structure via heat treatments. For single-phase microstructures, they aim to achieve a particular average grain diameter to leverage stress hardening or softening. The stochastic nature of the recrystallization process generates a grain size distribution, and the randomness of the crystallographic orientation determines the anisotropy of a mechanical response. We developed a multiscale computational formalism to capture the collective mechanical response of polycrystalline microstructures at unprecedented length scales. We found that for an averaged grain size, the mechanical response is highly dependent on the grain size distribution. The simulations reveal the topological conditions that promote coherent grain texturization and grain growth inhibition during stress relaxation. We identify the microstructural features that are responsible for the appearance of stress hotspots. Our results provide the elusive evidence of how stress hotspots are ideal precursors for plastic and creep failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA